Корзина
15 отзывов
Солнечные электростанции SolarLab
+380501084090
+380501084090
+380980084090

Контроллеры заряда/разряда

Контроллер защищает аккумулятор от перезаряда, переразряда и потери заряда ночью. Контроллер может работать при напряжении 12/24В. Ток поступающий на аккумулятор от солнечной батареи и ток потребляемый нагрузкой не должны превышать 30А.

Основной функционал контроллеров:
— автоматическое подключение солнечной батареи на заряд АКБ;
— многостадийный заряд аккумуляторной батареи;
— автоматическое отключение солнечной батареи при полном заряде АКБ;
— автоматическое отключение нагрузки при установленном уровне разряда АКБ;
— переподключение нагрузки при восполнении заряда АКБ;

Типы контроллеров:

ШИМ (PWM) - широтно-импульсная модуляция(Pulse-width modulation)

МРРТ - поиск точки максимальной мощности(Maximum Power Point Tracking)

Существовавшие ранее модели контроллеров отключали солнечный модули при полной зарядке АКБ путем их закорачивания. Это ограничивало область применения подобных контроллеров лишь солнечными батареями, которые не боятся короткого замыкания. Контроллер с ШИМ - это последовательный контроллер и он отключает зарядку не закорачивая солнечные модули. Его алгоритм работы позволяет достигать 100% уровень зарядки аккумулятора. 

1 2 3

ШИМ-контроллеры обычно применяются в небольших система от 100 Вт до 2 кВт, где нужна зарядка  аккумуляторов небольшой емкости и установлено немного модулей. Некоторые из них имеют как светодиодную индикацию, так и LCD-экраны, на которые выводится вся текущая информации о работе системы.

Ниже приводятся в виде таблицы сокращенные технические характеристики ШИМ-контроллера на примере Steca PR3030:

Напряжение 12/24В
Максимальный входной ток 30А
Максимальный ток нагрузки 30А
Максимальное собственное потребление 12ма
Напряжение ударного заряда 14.4/28.8В
Напряжение поддержки 13.9/27.8В(для герметичных АКБ)
14.1/28.2В(для АКБ с жидким электролитом)
Напряжение выравнивания(для АКБ с жидким электролитом) 14.7/29.4В
Напряжение защитного отключения нагрузки(SOC,30%) 11.1/22.2В
Напряжение повторного подключения нагрузки(SOC>50%) 12.6/25.2В
Интервал рабочих температур -10...+50°С
Размер терминалов 16/25мм*2
Класс защиты IP22
Габаритные размеры 187*96*44мм
Вес 350г

 

 

 Когда напряжение на АБ достигает определенного значения, алгоритм ШИМ постепенно снижает ток заряда для предотвращения перегрева, вспухания или закипания аккумуляторов. Однако заряд АБ продолжается для достижения максимального количества энергии, запасаемой в АБ. Более того, сокращается время заряда. Результатом является более высокий КПД процесса заряда, быстрый заряд и полностью заряженная батарея. Аккумуляторы, которые заряжаются с использованием алгоритма ШИМ, будут поддерживаться при очень высоком среднем уровне заряженности в типичной солнечной системе электроснабжения. Кроме обеспечения более высокой резервной емкости в системе, срок службы аккумуляторной батареи может быть значительно увеличен. При использовании алгоритма ШИМ выравнивание элементов возможно и при более низких напряжениях. ШИМ заряд позволяет поддерживать отдельные элементы аккумуляторной батареи в более сбалансированном состоянии. Это важно при использовании герметичных аккумуляторов, которые не допускают газовыделения. Также, это очень полезно при использовании при заряде аккумуляторов от солнечных батарей, так как на практике в солнечных системах электроснабжения очень редко бывают случаи, когда возможно поддержание напряжения на АБ на высоком уровне в течение длительного времени. Специальное  исследование контроллеров с ШИМ показало, что контроллеры повышали восприимчивость АБ к заряду именно вследствие использования широтно-импульсной модуляции тока заряда. Контроллеры ШИМ позводили даже увеличить эффективность заряда АБ на 2-8% даже по сравнению с контроллерами, которые поддерживали постоянно высокое напряжение на АБ. Ряд испытаний показал, что алгоритм ШИМ имеет значительные преимущества для повышения восприимчивости АБ к заряду. Это исследование, проведенное Morningstar, было проведено в одинаковых тестовых условиях. Контроллер с ШИМ позволял "закачать" в аккумулятор на 20%-30% больше энергии от солнечных батарей, чем on-off контроллер.

Контроллер заряда Контроллер заряда Контроллер заряда Контроллер заряда

  Контроллер МРРТ работает по технологии управления максимальными пиками энергии. Это технология, которая позволяет заряжать АКБ с номинальным напряжением более низким, чем номинальное напряжение солнечной батареи. Например появляется возможность зарядки  АКБ с номинальным напряжением 12В от солнечной батареи с номинальным напряжением 24В, 48В, 60В или более. Это происходит за счет отслеживания точки максимальной мощности (Maximum Power Point Tracking) и преобразования напряжения СБ в более низкое, но с бОльшей силой тока, мощность источника при подобном преобразовании сохраняется. КПД МРРТ контроллеров составляет порядка 94-98%-очень высокая эффективность! Иначе говоря, чтобы шел заряд аккумуляторной батареи, солнечный модуль должен подать напряжение на батарею более высокое, чем напряжение АКБ. Рабочее напряжение модуля с номинальным напряжением 12В при стандартных условиях паспортизации(освещенность 1000Вт/м2, температура 25°С, спектр АМ1.5) обычно находится в пределах 17-18В. Такое рабочее напряжение солнечного модуля выбирается для того, чтобы в жаркий солнечный день рабочее напряжение нагревшегося гораздо выше 25°С модуля снизившись примерно до 15В, по прежнему превышало напряжение полного заряда АКБ(при температуре 25°С это напряжение для свинцово-кислотного аккумулятора равно 14,4В). По другому дело обстоит  при облачности низкой освещенности. При одинаковом номинальном напряжении СБ и АКБ может в условиях низкой освещенности возникнуть ситуация, когда напряжение солнечной батареи меньше напряжения аккумулятора, и соответственно зарядки нет. Но ситуация меняется, когда несколько последовательно соединенных модулей с напряжением превышающим номинальное напряжение АКБ подключаются на вход контроллера МРРТ. Чем выше общее напряжение модулей, тем при более низкой освещенности продолжает происходить зарядка аккумулятора. Представленные на рынке МРРТ контроллеры допускают входное напряжение в интервале 75-150В в зависимости от модели и фирмы производителя. Хотя в последнее время стали появляться и контроллеры с максимальным входным напряжением до 200В. Самые мощные контроллеры рассчитаны на входной ток 60-80А. Это позволяет подключать на один контроллер солнечные модули суммарной мощности до 4000Вт при системном напряжении 48В. Контроллер автоматически находит точку максимальной мощности системы солнечных модулей. Это позволяет получить прибавку в 30% к генерируемой модулями мощности в целом за год. Алгоритмы поиска точки максимальной мощности разнообразны, каждый имеет свои особенности и каждый производитель МРРТ контроллеров использует свои. Этапы зарядки МРРТ контроллера идентичны этапам зарядки контроллера с ШИМ. Многие контроллеры МРРТ позволяют выбор системного напряжения, широкие настройки для заряда АКБ, выполнять выравнивающий заряд для АКБ с жидким электролитом по расписанию, имеют счетчики сгенерированной солнечными модулями энергии в А*ч или Вт*ч посуточно(последние 128 дней), помесячно и таким образом позволяют наблюдать энергетический баланс в системе, индицируют мгновенную мощность солнечных модулей, входное напряжение солнечных модулей, суммарный ток массива солнечных модулей, напряжение в точке максимальной мощности(МРРТ), ток в точке максимальной мощности, температуру АКБ(при наличии температурного датчика), при помощи дополнительного оборудования или самостоятельно (MS TriStar MPPT) могут транслировать основные характеристики в сеть интернет, имеют вспомогательный выход(AUX) c помощью которого можно управлять внешними и внутренними функциями в зависимости от температуры и напряжения на АКБ или на солнечных модулях, возможность объединения в общую сеть с «себе подобными» или другими совместимыми продуктами для оптимального взаимодействия и обмена информацией и др.

Контроллеры с жидкокристаллическими дисплеями могут отображать массу полезной информации:
— уровень заряда АКБ в процентах, называемый SOC (State Of Charge);
— напряжение на АКБ;
— ток солнечной батареи;
— ток зарядки АКБ;
— ток в цепи нагрузки;
— суммарное количество накопленных А*ч от солнечной батареи;
— суммарное количество отданных нагрузке А*ч;
— предупреждение о скором отключении нагрузки.